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Abstract. Using the optical Stern-Gerlach model, we have recently shown that the non-local correlations
between the internal variables of two atoms that successively interact with the field of an ideal cavity in
proximity of a nodal region are affected by the atomic translational dynamics. As a consequence, there can
be some difficulties in observing violation of the Bell’s inequality for the atomic internal variables. These
difficulties persist even if the atoms travel an antinodal region, except when the spatial wave packets are
exactly centered in an antinodal point.

PACS. 42.50.-p Quantum optics – 32.80.Lg Mechanical effects of light on atoms, molecules, and ions –
03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.)

Peculiar concepts of quantum mechanics (QM), such as
the Bohr’s principle of complementarity [1–4], have their
origin in the vectorial nature of the state space, which in-
volves a superposition principle. Complementarity (or du-
ality) [5] establishes a sort of “orthogonality” between the
which-way information and the possibility of observing in-
terference pattern. In other words, these two behaviors are
mutually exclusive. In its quantitative analysis of comple-
mentarity, Englert [5] (see also [6]) introduces a measure of
the which way information in terms of the distinguishabil-
ity D, defined as the distance between the quantum paths
in the trace-class norm. The distinguishability D and the
visibility V of the interference pattern can in some extent
coexist, and as shown in the same reference, they satisfy
the inequality D2+V 2 ≤ 1. According to this analysis and
in the ambit of the optical Stern-Gerlach (SG) model, we
have recently shown [7] that the visibility of the Rabi oscil-
lations and the distinguishability of the two atomic trans-
lational paths satisfy the equality relation D2 + V 2 = 1
when pure initial states are considered.

When applied to a composite system, the superposi-
tion principle leads to quantum correlations (entangle-
ment), which may hide the individuality of the subsys-
tems. Differently from the classical case, and in idealized
configurations, two quantum systems that have interacted
for a time, generally do not recover their individuality,
even if the subsystems become spatially separated. This
inseparability, which has been at the origin of the famous
debate between Einstein [8] and Bohr [9] on the complete-
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ness of QM, implies a non local character of the correla-
tions (EPR correlation [10]) between the two subsystems.
This non-locality can be individuated by the violation of
some Bell’s inequality [11]. It is to note that, differently
from the pure case, a mixed state may be EPR correlated
and, at the same time, it may satisfy the Bell’s inequal-
ity [10].

Recently, it has been payed attention to teleportation,
non-local correlations, separability and related issues for
massive particles [12–22]. As suggested by Phoenix and
Barnett [17] (see also [18]), a simple model which can re-
alize an EPR state for massive particles consists of two
atoms which interact successively with the field of an opti-
cal cavity, in the ambit of the standard Jaynes-Cummings
(JC) model. The entanglement developed during the in-
teraction between the first atom and the field, may induce
quantum correlations between the two atoms as the second
one interacts with the field of the same cavity. Experimen-
tal generation of an EPR atomic pair has been realized by
Haroche and co-workers [12,13], which ascribe to several
experimental imperfections the reduction of purity of the
entanglement that prevents the Bell’s inequality violation.
In a different contest such a violation for entangled ions
has been experimentally observed by Rowe et al. [14].

In a recent paper [22], we have suggested that a care-
ful analysis of the interatomic correlations may require
the quantization of the translational dynamics of the two
atoms along the cavity axis. In that paper, we have con-
sidered two-level atoms entering the cavity in a nodal re-
gion, where the field gradient is different from zero. The
entanglement between the internal and external atomic
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variables affects the non local features of the interatomic
correlations making more difficult the observation of Bell’s
inequality violation with respect to the JC model. How-
ever, in most cases (as in Ref. [12]) the experiments are
performed in such a way that the atoms interact with the
cavity field in an antinodal region. Consequently, it seems
suitable to extend our previous analysis to this case. Our
present analysis confirms qualitatively the results of the
previous one, except when the spatial atomic wave packets
are exactly centered in an antinodal point.

In our model two two-level atoms interact successively
with a single mode of the e.m. field of an ideal cavity. The
first atom, say A1, enters the cavity at time t = 0 and
interacts with the field for a time t1. It moves prevalently
along the z -direction, orthogonal to the x -cavity axis and
we assume that the velocity along this direction is large
enough to treat classically this component of the motion.
The second atom, say A2, enters the cavity at time t2 > t1,
interacts with the e.m. field as modified by the first atom
and leaves the cavity at time t3. Finally, both the atoms
evolve freely for t > t3. The atoms enter the cavity in prox-
imity of an antinodal region of the resonant k -mode, and
the width of their wave packets is sufficiently small with
respect to the wavelength of this mode. The Hamiltonian
of the system at all times can consequently be written as
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where x̂i is the position of atom Ai with respect to the
antinodal point and p̂i its conjugate momentum. The
atom-field interaction is described by ûi = â†Ŝ−,i + âŜ+,i

where â and â† are the usual annihilation and creation
field-operators, while Ŝ±,i are the 1/2-spin operators.
The atoms have same mass m and same atom-field cou-
pling constant ε. The linear combination of step-functions
µt(x, y) = θt(x)− θt(y), with different points (x and y) of
discontinuity, distinguishes the different time ranges con-
cerning the successive interactions.

As in reference [17] where the standard JC model is
adopted and as in our previous paper [22], we consider
the simple case of only one atom-field system excitation.
In particular, we start considering both the atoms initially
in the ground state and just one photon in the cavity, so
at time t = 0 the state is |ψ(0)〉 = |g1〉|1〉|ϕ1(0)〉, where
|ϕ1(0)〉 is a translational state of the atom A1.

Using the evolution operator related to equation (1),
the state of the system for t ≤ t2 is (except an irrelevant
global phase factor)
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At time t = t2 the second atom, in its ground internal
state, enters the cavity and starts to interact with the
field modified by the interaction with the first atom. Let
|ϕ2(t2)〉 be the translational state of atom A2 at the begin-
ning of its interaction with the cavity field. The state of the
entire system at this time is |Ψ(t2)〉 = |ψ(t2)〉|g2〉|ϕ2(t2)〉.
Applying the same procedure as above, we derive the state
at time t > t3, when both the two atoms have left the cav-
ity and evolve freely
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and we have introduced the interaction time T1 = t1 and
T2 = t3− t2 for atoms A1 and A2, respectively. Tracing on
the field and atomic translational variables, the following
reduced density operator is obtained
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=
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where we have put
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As it is easy to see, equation (11) is formally very sim-
ilar to the corresponding equation of reference [17]. The
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difference between equation (11) and the corresponding
in reference [17] is the fact that the coefficients (12) are
now affected by the translational dynamics. As in refer-
ence [22], the scalar products which appear in this equa-
tion are generally subjected to a non dissipative decay
and this behavior may affect the non local character of
the correlations between the internal atomic variables.

An evaluation of the quantities (12) is not a trivial
operation because the evolution operator in equations (4)
and (9) describes a harmonic-like evolution (sign −) or a
squeezing-like evolution in the other case (sign +) [25]. In
fact one can write
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are boson operators and ω2
0 = �k2ε/m. To calculate the

scalar products (12), it is convenient to put the squeezing
operators (13) in factored forms [23], for instance
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and similar expressions. Moreover, for the sake of mathe-
matical simplicity, we assume that the initial translational
states for both the atoms are given by coherent states of
the boson-like operators bj, with the same width. In other
words, we suppose that at the beginning of the interac-
tion with the cavity field the translational states of both
the atoms are coherent states with respect to the bosons
operators b̂j : |ϕj(initial)〉 = |αj〉, with b̂j|αj〉 = αj |αj〉,
and
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[
i

�

(
p
(j)
0 x̂j − x

(j)
0 p̂j

)]
|0j〉 (16)

αj = x
(j)
0

√
mω0

2�
+ ip

(j)
0

1√
2m�ω0

≡ aj + ibj (17)

where

〈xj |0j〉 =
(

1
∆x0

√
2 π

) 1
2

exp

[
− x2

j

4∆x2
0

]
(18)

is the wave function of the ground state of the b̂j corre-
sponding harmonic “oscillator” and∆x2

0 = �/2mω0 is the
same for both the atoms. This choice is not too restric-
tive because the only restriction introduced with respect
to a minimum uncertainty Gaussian packet with arbitrary
initial momentum p0 and position x0 is its wideness. Fur-
thermore, it is to notice that a general packet can always
be expressed as a superposition of coherent states. Using

equations (15) and (16), the scalar products which appear
in equation (12) assume the following form,
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A straightforward calculation leads now to the evaluation
of these scalar products, where the expansion of the state
exp[−i p̂2

2t/2m �] |α2〉 in terms of coherent states corre-
sponding to the second atom boson-like operators is re-
quired.

For x0 �= 0 and/or p0 �= 0 these terms are character-
ized by a non dissipative damping. For example, the scalar
product (19) for t ≤ T1 behaves as
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The damping factor shown by this last approximated ex-
pression, which is at the origin of the non dissipative
damping of the Rabi oscillations [7,24,25], is due to the
increasing distance in the phase space [26] of the two de-
flected components of the translational wave packet [27].
Similar behaviors hold for the other coefficients of equa-
tion (12). The condition (ω0t < 1) is not much restric-
tive for the parameters used in this paper, and at the
same time, it is in agreement with the quadratic approx-
imation of the cavity mode function. After a few periods
of Rabi oscillations, the damping factors involved in the
scalar products (12) when x0 �= 0, determine a decoher-
ence of the system described by the density matrix (11),
i.e. the last term in equation (11), representing the non-
diagonal terms, goes to zero. The system tends to become
separable [10]. It is impossible to observe such a behavior
in the JC model context.

It is to notice that when both the atoms interact
with the field exactly in coincidence of the antinode (i.e.
x0 = 0), the scalar products (19–21) produce just a slow
damping of the correlation functions and the density ma-
trix remain essentially non-separable.

Because, as said above, non-separability doesn’t imply
a violation of Bell’s inequality, guarantee of non-locality,
it is also useful to investigate the nature of the inter-
atomic correlations in terms of the Bell’s inequality. One
of the most cited Bell’s inequality formulation is given
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Fig. 1. Graphical solution of Bell’s inequality in terms of the
M(ρ) = max{(a), (b)} function, for two two-level atoms in-
teracting in succession with the field of the same cavity. Fig-
ure (i) shows the periodicity of λ1 + λ2 (continuous line) and
2λ2 (dashed line) when the JC model is adopted reference [17]
or the SG model is considered with x0 = 0 for both the atoms.
Figure (ii) illustrates the non dissipative damping of the corre-
lation between the two atoms due to the entanglement of the
field and the internal atomic variables with the translational
atomic degrees of freedom when x0 �= 0.

by Clauser, Horne, Shimony, and Holt (CHSH) in refer-
ence [28]. In spite of the relevance and simplicity of the
CHSH formulation, a straightforward application of the
same to reveal non classical behavior of a system can be
rather difficult. To avoid these problems we consider the
Horodecki family formulation [29]: a density matrix ρ de-
scribing a system composed by two spin 1/2 subsystems
violates some Bell’s inequality in the CHSH formulation
if and only if the relation M(ρ) > 1 is satisfied. The quan-
tity M(ρ) is defined as follows. Consider the 3× 3 matrix
Tρ with coefficients tn,m = tr(ρ σn ⊗ σm), where σn are
the standard Pauli matrices. Diagonalizing the symmet-
ric matrix Uρ = T T

ρ · Tρ (T T
ρ is the transpose of Tρ), and

denoting the three eigenvalues of Uρ by λ1, λ2 and λ3,
then M(ρ) = max{λ1 + λ2, λ1 + λ3, λ2 + λ3}. In our case
λ2 = λ3 and then M(ρ) = max{λ1 + λ2, 2λ2}. Figure 1
compares the behaviors of λ1 + λ2 (continuous line) and
2λ2 (dashed line) as a function of the interaction time

for the two models. For simplicity, in both the figures
(i) and (ii) we have assumed T1 = T2 = T . Concerning
the translational dynamics, in this figure we suppose for
both the atoms an initial wave packet of minimum un-
certainty, with zero mean value of p̂1 and p̂2, centered in
x1 = x2 = λ/10 and with a width imposed by the con-
dition of dealing with coherent initial states. λ = 2π/k is
the wavelength of the resonant k-mode of the undamped
cavity. The values of the other parameters are m = 10−26

kg, ε = 108 s−1 and λ = 10−5 meters. The response of the
Bell’s inequality test outlines the great difference between
the interatomic correlations predicted by the two models
when x0 �= 0. When x0 = 0 the JC and SG models con-
duce to an almost indistinguishable behavior of the system
with respect to non-locality (see Fig. 1(i)). This is due to
the fact that the equation (22) reduces to 1/

√
cosh(ω0t)

when x0 = p0 = 0 and this term results slowly decaying
for our values of parameters also in comparison with the
decay in equation (23).

It is possible, furthermore, to extend the discussion to
another simple case in which the single excitation belongs
initially to the atom A1. For this initial state, the quantity
M(ρ) reduces simply to the dashed line of Figures 1(i)
and 1(ii).

In conclusion, the internal variables of two atoms that
successively cross an optical cavity may result strongly en-
tangled through the interaction with the field of the same
cavity. This entanglement may lead to Bell’s inequality
violation. However, transfer of information from the sys-
tem of interest to other degrees of freedom (to a bath,
in the extreme case) produces a degradation of quantum
correlations. For the system here considered (the optical
SG model) the correlation with the atomic translational
degrees of freedom can actually be avoided by letting the
atoms cross as accurately as possible the cavity in the re-
gion with a zero gradient of the mode function. In the
experimental settings of references [12,13], the atoms ac-
tually cross the cavity in an antinodal region, but one may
ask if the observed reduction of purity of the entanglement
could also be ascribed to eventual difficulties of centering
the atomic beam exactly in an antinodal point.
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